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Approximate equations have been obtained in the paper [I], which describe 
elastic-plastic deformations of certain classes of shells. As a basic of 
the analysis there was taken the double-layered model, which replaces the 
real shell. Further slm~llflcatlons followed ln some cases from the oartl- 

OF 

cular properties of the state of stress and deformation. For the ax&y& 
metrical deformation of a cylindrical shell the equations turned out to be 
exact within the bounds of the fundamental assumptions of the theory of 
shells and applied to the chosen model. In the paper mentioned above It 
was noted that the same equatlons are valid to describe the dteady creep 
flow of shells. Hence, the Introduction of the double-layered model must 
be looked upon as one of the approximate methods of the true dependence of 
the velocities of deformation and the rates of change of curvature from the 
stresses and moments. As it 1s known, It Is practically Impossible to obtain 
these dependences ln an explicit form. Here it Is proposed a further develop- 
ment of the theory, exposed In Cl], applied to the problem of creep of a 
circular cylindrical shell, fixed and loaded In @n axlsymmetrlcal way. The 
creep equations of the shell are deduced taking Into consideration the axial 
force , the varlatfional principle Is formulated, which allows to construct 
the approximate solution In an effective way. 

1. Let us consider a circular cylindrical shell with the radius of the 

middle surface equal to a . Let us take the x-axis along the generatrlx 

of the cylinder, all the quantities attributed to this direction, will be 

designated by the subscript 1, and the quantities, attributed to the perpen- 

dicular direction will be designated by the subscript 2. The velocities of 

deformation of the middle surface will be E, and Ed, the rate of change 

of curvature of the generatrlx will be designated by xi, the rate of change 

of curvature ln the circumferential dlrectlon will be n,- 0 . The real 

shell of thickness W Is replaced by a model shell, which consists of two 

layers, each of thickness 6 , the distance between the middle lines of the 

layers 16 2h . We will assume, that the velocities of deformation do not 

change along the thickness of each layer, therefore, the streseea are dls- 

trlbuted uniformly. The quantities attributed to the external layer, will 

be denoted by the (+) sign, and the quantities attributed to the Inner layer 
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will be denoted by the (-) sign. On account of the hypothesis of straight 

normals, the velocities of deformation of the layers are expressed in the 

collowing way: 
El + = e, _1- Qz, &I- = El - x,/z, E2+ = EQ- = Ez 

For a steady creep flow the stresses are determined in therms of the 

deformations by Formulas 

Here co and co correspond to the Intensities of the stresses and to the 

velocities of deformetion, the relation between them is established by the 

creep law, found from the creep experiment of a sample subjected to tension 

Ec = &*2, (0, /G*) 
. 

In this formula cx and o, are constants, which have the dimension of 

the velocity of deformation and of the stress, correspondingly. Let us 

designate by M,, Mz the bending moments, and by T1 and T2 the atresses. 

It is obvious,that 

M, = 612 (cQ+ - CJ-), T, = 6 @I+ + ~1% T, = 6 (02+ + uz-) (1.2) 

From (1.1) and the first two relations (1.2) it follows that 

(1.3) 

We will introduce the following nondimensional parameters 

(in parer [I] by w the inverse value was designated). 

Now, the reiation (1.3) can be rewritten in the following way: 

(Q + +),/ES = 'is 1/3(71l t a) O+ - 'i2U (1.5) 

For the Intensities of the velocities of deformation in the layers we 
have 

(e,')' = 4;s l&c" + (E1 + ?I,h)' + Es (El f @)I 

Taking Into consideration (1.5) and (1.4') we obtain 

(1.1)s = {Is -I- (?U * T)' (CO-)' (1.6) 

By definition, UJ can be considered as a function of v = co/c* , there- 

fore, u Is also a known function of w , in this way, Equation (1.6) deter- 

mines UJ+ and UJ-, which depend on the values u , m and 7 . With the 

help of (l.l), (1.2) and (‘1.5) we obtain for the stress Tz and for the rate 

of change of w, the following expressions: (1.7) 
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Formulas (1.6) and (1.7) express all parameters, which appear In the equa- 

tions of a cylindrical shell, In terms of m , Y and 7 . The parameters 

b and. h of the model shell are chosen depending on the thickness of the 

real shell and on the creep law. Let us require that the behavior of the 

real shell and the double-layered model be the same In the membrane state 

and In the pure bending state. From these conditions It follows that 

6 = H, 6hs (xh) =+f s (xz) zdz (1.8) 
6 

Here s Is a function, which gives the dependence of the stress from 

the velocity of the cregp flow during tension 0 =.G,S(s / Q). 

The determination of the value h , generally depends on w , only for a 
creep law given In a power form. From (1.8) It follows that 

In this way, the application of the double-layered model Is mostly justl- 

fled for a power law. 

It ought to be noted, that all the authors who considered the creep of 
shells, have been forced to use some kind of approximate dependence'of the 
velocity of deformation and the rate of change of curvature on the stresses 
and moments 12 to 43, because it has not been possible to write the exact 
relations. The Introduction of a double-layered model by the described 
method Is one of the ways of approximation of the relations mentioned above. 

2. The equilibrium equations for a symmetrically loaded circular cylln- 

drlcal shell will be the following: 

dT1 -= 
dx 0, g+++q=o, %+Q=O (2-l) 

Here Q Is the normal load and Q is the shearing force. From the 

second and third equations of (2.1) it follows that 

dzM,/ dx2 - a_lT, - q = 0 (2.2) 

The deformation In the circumferential direction and the rate of change 

of curvature of the generatrlx are connected by the following equation of 

compatlblllty: 
dze2 / dx2 + a-lx, = 0 

Let us Introduce a nondimensional parameter 

E=xlb, b = (‘6/s)“I/ah 

and by using (1.4) and (1.7) we will pass to the new 

In Equations (2.2) and (2.3). As a result we obtain 

ms - u -& + f, 
( --r+2p=O 

I/s 

(2.3) 

variables m and u 

a system of equations 

( qa 
P=-2ZSca* -) 

(2.4) 

7.f + (m + z) o+ + (m - z) co- = 0 (2.5) 

As a consequence of the first equation of (2.1), 7 Is here a constant; 

the p?lmes Indicate the differentiation with respect to < . The magnitudes 
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uJ+ and UJ- are found from Equation (1.6), which for the powertcreep law 

c i 64: =_ (v /G.;*)" takes the form 

(~+-)w(w = 7J2 _+ (m + 42 ((&)2 
(2.6) 

Let 1 be the nondimensional length of the shell. Let us consider the 

functional 1 

. !Y =- 
il 

u’m’ + -&q (co+) + &I((+ (rn$T)2 (fJ+-((m-~)2~-+ 
0 

t 2 (& - p) zq dE (2.7) 

It is not difficult. to check, that Equations (2.4) and (2.5) will be the 

Euler equations for this functional for the natural boundary conditions 

which follow frcm Equation 
(u'8m + m'6u)j,f= 0 (2.8) 

For the power creep law the functional (2.7) is also written In a some- 

what more suitable form 

x I(m+t)2W++(m- 2)2 w-1 + 2 (& - Pi u} dE (2.9) 

3. In the absc3ceaof the axial force w+= W-, Equations (2.4) and (2.5) 

are replaced by 
m” - $ + 2p = 0, uN + 2mo = 0 (3.1) 

the relation (1.6) is replaced by 

u2 (0) = u2 + m202 (3.2) 
and the functional (2.7) takes the form 

N = ’ [u’m’ + I$ (w) - 2m20 - 2pul dE 
\ l 

0 
(3.3) 

During the variation of this functional the functions u(5) and m(5) are 

considered as Independent. However, It can be considered that either the 

first or the second of the equations (3.1) is satisfied. In this case only 

one function is given independently, and the second one is expressed in terms 

of the first. With this, the functional (3.3) Is converted Into a functional 

of Lagrange type, or In a functional of Castlgliano type. 

Let us assume, for example, that the second equation of (3.1) Is satls- 

fled. This means that the variational function u(5) Is given, while the 

function m(5) is expressed in terms of ~(5) . Let us integrate by parts 

the first term under the integral sign In Expression (3.3). By taking into 

consideration the second equation of (3.1) we obtain 

AY = 2\ (1/2$.-pu) dE + mu’ 1: 

0 
(3.4) 

According to (2.8) the function +JI(UJ) represents a nondimensional creep 
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potential, which represents the analog of an elastic potential in the cor- 

responding problem of nonlinear elasticity. The Integral of pud5 gives 

the work of the external forces, hence, the functional N is transformed 

Into a 

tional 

functional of Lagrange type. Taking into account (2.9) the varla- 

equation will be the following: 

,,i (l/,11, - P'Z) dE = @2'6U - m&i')):, 

0 
(3.5) 

The right-hand side represents the work of the external forces, applied 

to the edges of the shell. The function f is determined In terms of UI , 

but as a consequence of (3.2) the quantity w is a function of 

Let us now assume, that the flpst equation of (3.1) is satisfied. Follow- 

ing exactly the same method, we will transform the functional (3.3) to the 

form I 

The expression under the Integral sign 

ql 
2v2 -- o = $* [\ a&o- 60801 = - & \ EodQo 

will be the analog of the additional work for thw nonlinear elastic body. 

Therefore, the functional N Is transformed to the Castlgllano functional 

iv=-2~++7?2’~~ 

The variational equation with the consideration of (2.9) will be the fol- 

lowing: 
260 = (U&12 - z&&l (3.6) 

The argument of the function $ - 2va/u will be now the expression 

m2 + ‘I4 (m” + 2p)2 

Exactly analogous results are also obtained, In 

force is different from zero, only In this case It 

an explicit expression for the Lagrange functional 

the Castlgllano functional In terms of m(5) . 

the case when the axial 

Is not possible to write 

In terms of u(s) and for 

4. The application of the formulated variational principle, which allows 

the Independent prescription of the approximate functions for u(c) and for 

m(5) > has some advantages. In any case, Introducing two sought parameters, 

we can expect a better accuracy, then by t'he use of the ordinary variational 

principles, where In most cases only one parameter Is Introduced. Inciden- 

tally, let us notice that the condition 6N = 0 which depends on the elec- 

tion of the functions of comparison can mean as well a maximum as a minimum 

of the functional N . 

As an Illustration, let us consider the problem of an edge effect of an 

Infinitely long cylindrical shell, loaded with a uniformly distributed 
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pressure. Let us consider at first that the axial force is absent, the case 

7 # 0 is considered In exactly analogous way. We will take the power creep 

law, place the origin of the coordinates at the edge of the shell and we 

will solve the problem for two cases: (a) the edge is simply supported, 

u(0) = m(0) = 0, and (b) the edge is clamped, u(o) = u’(0) = 0 . 

At a sufficiently large distance from the supported edge the shell Xs in 

a membrane state, therefore, m(m) = 0, u(m) = I(*, u(m) = w*, from the second 

equatlon of (3.1) and the relation (3.2) it follows that 
n-1 

(I.* = pn a* = pn-’ = u*” 

Let us introduce the functions v(s) and ~(5) which satisfy the system 

of linear equatlons 
u” + QL,v = 0, v” - 2h (U - ?P) = 0 (4.1) 

and the boundary conditions 

U (0) = 0, V (0) = 0 in the case (a); U (0) = 0, U’ (0) = 0 
in the case (b). 

The solution of Equations (4.1) can be expressed in the following way: 

u = u-“Uo (cc@, 

The functions U, and 

u, (2) = 1 - 

vo (cg,) (d == hf.&, p = TP ~~~I~) (4.2) 

v, are determined by Expressions 

e-” cos x , V,(x)= e-r sins (case (aI) (4.3) 

uo (2) = 1 -e-r (cos 5 f sin z), v, (5) = e-% (COS 2 - Sin X) (case (b) ) 

Let us look for the solution of the problem in consideration in the form 

of u = U(a& m = V(u~), where the parameters o and g are chosen 

from the cond;tion that the variation of the functional N is zero. In 

addition, let us assume that 
n-1 

0 = o*cog = u* n 00 (4.4) 
Introducing (4.2) and (4.4) into the first equation of (3.1), and deter- 

mining in (3.2) the function v which corresponds to t<he power creep law, 

we obtain 

00 
s = u,2 + p2J7,zo*z (4.5) 

For the calculation of the functional (3.3) let us express it in the form 

(2.9) letting 7 - 0 and UJ+= UJ- . For an Infinite region the integral 

turns out to be divergent; to provide its convergence we will add some con- 

stant terms under the Integral expression. For the purpose of calculation, 

it is convenient toWchoose x - a5 as the variable of integration; now 

the primes will indicate the differentiation with respect to the variable. 

To within a constant multiplier we obtain for the functional N 
(4.6) 
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It Is evident, that with the assumed election of the functions of compar- 

ison the condition (2.9) will be satisfied In the case (a), as well as In 

the case (b). 

Let us write Expression (4.6) In the following way: 

N = aPA + + B (p) 

The stationary conditions will be 

PA - &B (P) = 0, 1 al3 
aA+-- =-0 

a @J 
From here It followa that 

$ (PB) = 0, B cc = -@ (4.7) 

For n = 1 we have a = 1 , hence we must expect, that for n z= 1 we 

will have s < 1 . 

Let us now pass to the construction of the approximate solutions for the 

boundary conditions. 

C a s e (a) . The quantity v, results to be considerably smaller, 

than u,, the quantity wc must be smaller 

the first term will be the predominant one 

(4.5). Let us assume 
n-1 

0 o=U"(1fp) 

Substituting this expression Into (4.5) 

of p , we obtain . 

than unity; B<lr therefore, 

on the right-hand side of Equation 

(P<i) 

and retaining only the first power 

With the same degree of accuracy we obtain 

B (P> = 2J, - p=J, 

Whereas A = -+ . In the expression for B(B) we have 

33 n+1 n-1 - 
J, = 

SII 
--l_UX--Uu, ++-]dx, 
n+l 

J, = rVoB U n dx 
0 0 

Now from (4.7) it follows that 

p+.’ (g=_4 - 
( y - J,P) (4.8) 

We give the values of s and a calculated for n = 1,...,6. 

n 1 2 3 4 5 6 

,J = 1.000 0.840 0.728 0.643 0.598 0.540 
a = 1.000 0.860 0.763 0.718 0.678 0.646 

For bigger values of n , the approximation, based on the assumption, 
that the deflections and moments are the same, as for an elastic shell, can 

not be considered reliable. Besides, an exact formulation of the shell 

problem, loaded with the pressure and supported at the edge, is contradictory 

to a power creep law. Indeed, u = 0, m = 0 for x = 0, therefore, w =0, 
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and the solution of Equations (3.1) in the neighborhood of the origin of the 

coordinates does not exist. 

The reason for this is easy to understand, if we observe, that for the 

given boundary conditions the limiting state of an ideally rigid-plastic 

shell is impossible. The circumstance, that for a power creep law the dia- 

gram u,c, is tangent to the e,, axis, creates here a similar situation. 

The situation can be corrected, by midify?ng slightly the creep law in the 

region of very small stresses. With the use of the 

difficulty does not arlse. 

C a s e (b) . Now A = 3 , the quantities Q, 

order in a certain region, and the simplifications, 

slderatlon of a simply supported shell, do not take 

express B(e) in the form 

variational method this 

and VO have the same 

found out from the con- 

place here. Let us 

B (B) = 2J,- &B”Jz 
Here 

The integrals J, and ~~ are functions of g . The condition (4.7) leads 

to the following relations: 

J1 - p” s J, - 0, a=-$ - ( Jl 
P - &Jz, 

The calculations, done for n = 3 , have shown, that $ = 1 , for which 

a = 0.716 , The circumstance, that the magnitude of the moment at the 

clamped edge for n = 3 is equal to the magnitude of the moment for n = 1, 

hence, It is the same as for an elastic shell, must not be surprising. In 

the limiting state of an ideally plastic shell for P = 1 the magnitude of 

the moment at the clamped edge is equal to &f3 = 0.866 , which dlfferes by 

a relatively small amount from unity. 

The same problem was solved in the paper [4], with the help of the varia- 

tional Lagrange equation. The deflection was given In the same form as here, 

and the simplification consisted in that the rate of change of the curvature 

was considered only a function of the moment, and the velocity of circular 

deformation only a function of circumferential StPeSS. For n = 3, the 

value a = 0.659 was found. Of cous%e, the distribution of the bending 

moment turned out to be complete1 different. fn the presence of an axial 

force, the computation is done by an analogous method. 

For this purpose let us assume 
n-1 f -- 

t =L vcl'n , u = ycu,, m ==pc l/nVQ, ai- = c =Wo @.10) 
Here U, is a function, which satisfies the boundary conditions for the 

deflection and which Is unity at infinity, v, is a function which satisfies 

tne boundary conditions for the moment and which vanishes at infinity. We 
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csn choose these functions In the same way as In the absence of the axial 

force. Then they will depend on the argument ag , the quantity O. , which 

determines the rate of damping of the edge effect, is one of the sought vari- 

ational parameters, and the second of these parameters is P . 

Let us require, that III,,*(=) = 1 , then from (2.6) it follows that 

1 = ya + Y2 

Equation (2.4) for 5 = - gives 

p = cl/* ?- + 
i 6) 

(4.11) 

The quantity +T is given, consequently, all the parameters introduced 

are now known. i.e. 

Cl@:: "G 
-7' 

Y=& TX-& 

Equation (2.4) takes the form 

(oo‘t)“’ = y2u,2 + (gw, f v)2 (of)+ )” (4.13) 
The quantities a and $ are found by the previous method from the con- 

itions (4.7), in which 

- & I(bo -k q2 %+ + wo - v)” i- - 2x721 - 2y2 (U, - 1)) dJ: (4.141 

The computation is reduced to the calculation of B(P) for some values of 

P , after that, we find by interpolation the value, for which the first of 
the conditions (4.8) is satisfied. Let us observe, that ]01< y for n>l. 
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