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Approximate equations have been obtained in the paper [1], which describe
elastic-plastic deformations of certaln classes of shells. As a basic of
the analysis there was taken the double-layered model, which replaces the
real shell, Further simplifications followed in some cases from the parti-
cular properties of the state of stress and deformation. For the axisym-
metrical deformation of a cylindrical shell the equations turned out to be
exact within the bounds of the fundamental assumptions of the theory of
shells and applied to the chosen model. In the paper mentioned above it
was noted that the same equations are valld to describe the steady creep
flow of shells., Hence, the introduction of the double-layered model must

be looked upon as one of the approximate methods of the true dependence of
the velocitles of deformation and the rates of change of curvature from the
stresses and moments. As 1t is known, it 1s practically impossible to obtain
these dependences In an explicit form. Here 1t 1s proposed a further develop-
ment of the theory, exposed in [1], applied to the problem of creep of a
circular cylindrical shell, fixed and loaded in an axisymmetrical way. The
creep equations of the shell are deduced taking into consideration the axial
force , the varlational principle i1s formulated, which allows to construct
the approximate solution in an effective way.

1. Let us consider a circular cylindrical shell with the radius of the
middle surface equal to g . Let us take the x-axls along the generatrix
of the cylinder, all the quantities attributed to this direction, will be
designated by the subseript 1, and the quantitiles, attributed to the perpen-
dicular direction will be designated by the subscript 2. The velocities of
deformation of the middle surface will be ¢, and ¢,, the rate of change
of curvature of the generatrix will be designated by x,, the rate of change
of curvature in the circumferential direction will be x,= O . The real
shell of thickness 27 18 replaced by & model shell, which consists of two
layers, each of thickness § , the distance between the middle lines of the
layers 1s 2n . We will assume, that the velocitlies of deformation do not
change along the thickness of each layer, therefore, the stresses are dis-
tributed uniformly. The quantities attributed to the external layer, will
be denoted by the (+) sign, and the quantities attributed to the inner layer
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will be denoted by the (=) sign. On account of the hypothesls of straight

normals, the velocities of deformation of the layers are expressed in the
“ollowing way:
gt = g, - %k, g~ = & — u;h, gs" = gy = &,

For a steady creep flow the stresses are determined in therms of the

deformations by Formulas

4 gyt A —~
o =52 {gl—}—xllz#— ], 51_:3—%[81_%1h+_})__82]
v 4 ’ - 4 oy 1 1 (1.1)
Go = ?80 [ 2 + + &1 + lh}, Gy = s a) [82 + ~2—u1h‘

€ correspond to the intensitles of the stresses and to the

Here o, and
the relation between them is established by the

velocities of deformetion,
creep law, found from the creep experiment of a sample subjected to tension
€y = €,0 (0o / Oy)

04 are constants, which have the dimension of

In this formula e, and
Let us

the veloclity of deformatlon and of the stress, correspondingly.
designate by M, , M, the bending moments, and by I, and T, the atresses.

It is obvious,that
M; = dh (0" — 0y7), Ty =8 (0y" + 0y), To=298(0 +0,7) (1.2)

From (1.1) and the first two relations (1.2) it follows that

3 g
gyl = g % — (M, £ nT )—— €q (1.3)
We will introduce the following nondimensional parameters
]/rg M, B V?) T __ €y 034
& Shs, O BN R R Soe, = © (1.4)

(in parer [1] by w the inverse value was deslgnated).
Now, the reiation (1.3) can be rewritten in the following way:
(e, 4 %)y =, V'3 (m+ 1) 0 — You (1.5)
For the intensities of the veloclties of deformation in the layers we
e (80 = /5 les® + (81 & #i1)* + &5 (81 £ %))
Taking into consideration (1.5) and (1.¥) we obtain
() = u? -+ (m 4+ 1) (0=) (1.68)

can be considered as a function of v = ¢,/e, , there-

By definition, w
w , 1in this way, Equation (1.6) deter-

fore, v 1s also a known function of

mines ' and  , which depend on the values w , m and 1 . With the
help of (1.1), (1.2) and (1.5) we obtailn for the stress T, and for the rate
1.7

of change of x, the following expressions:

T,= do, {u k-ﬁ% -+ —1—> ‘ 25 t} , %y = Ee—* [(m+3)o*+(m — 1) 07]
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Formulas (1.6) and (1.7) express all parameters, which appear in the equa-
tions of a cylindrical shell, in terms of m , ¥ and t . The parameters
8 and h of the model shell are chosen depending on the thickness of the
real shell and on the creep law. Let us require that the behavior of the
real shell and the double-layered model be the same in the membrane state

and in the pure bending state. From these conditions it follows that
H

8 = H, O&hs(xh) =~g s (%z) zdz (1.8)
[}
Here 8 1s a function, which gives the dependence of the stress from
the velocity of the creép flow durlng tension ¢ ==.G*S(8 /8*).

The determination of the value 3 , generally depends on x , only for a

creep law given in a power form. From (1.8) it follows that
A n \/ (4D
=% H

In this way, the application of the double-layered model 1s mostly Justi-
fied for a power law.

It ought to be noted, that all the authors who considered the creep of
shells, have been forced to use some kind of approximate dependence of the
veloclity of deformation and the rate of change of curvature on the stresses
and moments [2 to 4], because it has not been possible to write the exact

relations. The introduction of a double-layered model by the described
method 1s one of the ways of approximation of the relations mentloned above.

2. The equilibrium equations for a symmetrically loaded circular cylin-

drical shell will be the followlng:
aTy _ aQ | T» dM;
=% Ft+3t+e=0 TF+0=0 (2.1)

Here ¢ 1s the normal load and ¢ 1s the shearing force. From the
second and third equations of (2.1) it follows that

M, /dz* — a7, —q=0 (2.2)
The deformation in the circumferential direction and the rate of change
of curvature of the generatrix are connected by the followlng equation of
compatibility: _
P v d%, / da? 4 a”ln; = 0 (2.3)
Let us introduce a nondimensional parameter
l/ —
E==z/b, b= (%)"Vah
and by using (1.4) and (1.7) we will pass to the new variables m and u
in Equations (2.2) and (2.3). As a result we cbtain a system of equations

” 1 1 2 a
m — u (TD: + l(l)_:) — ﬁr -+ 2p =0 <p=_262a*> (24)
v+ m+ 1ot +m—10 =0 (2.5)

As a consequence of the first equation of (2.1), T 18 here a constant,
the primes indicate the differentlation with respect to € . The magnitudes



1258 Iu.N. Rabotnov

+

w* and w are found from Equation (1.6), which for the powericreep law
&/ e, = (7/04)" takes the form

((Di)%/(n—l) = p? 4 (m - 1) (wi)Z (2.6)
Let 1 be the nondimensional length of the shell. Let us consider the
functlonal
, ‘ 1 1
7o [ + - -
N =\ wm 5 (@) b)) — (k1) @' (e
Y]
-¥2<~Lr—— >u]d ® (e _ 2
relys TP g P (o) e oode, (2.7)
It is not difficult to check, that Equations (2.4) and (2.5) will be the
Euler equations for this functional for the natural boundary condlitions
which follow frcm Equation | , .
(udm + m'du)|; = 0 (2.8)
For the power creep law the functional (2.7) 1s also written in a some-
what more sultable form
l

N=\luwm +" p2( L 1y _ _1
;{um —i—n+1u \w+—{-m_) o

X [0n 4+ 12 0" + (m — 1 0] + 2(]/—%_ p) u} de (2.9)
3. In the absecnceof the axial force w*'= w”, Equations (2.4) and (2.5)
are replaced by

X

m— 2 1op =0, W+ 2me =0 (3.1)
the relation (1.6) is replaced by
v (0) = u® 4+ m?e? (3.2)

and the functional (2.7) takes the form
l.
N = \ [w'm' + ¢ (0) — 2mPo — 2pul d& (3.3)
6
During the varlation of thls functional the functions u(g) and m(g) are
considered as independent. However, it can be considered that either the
first or the second of the equations (3.1) 1s satisfied. In this case only
one function is given independently, and the second one is expressed in terms
of the first. With this, the functional (3.3) 1s converted into a functional
of Lagrange type, or in a functional of Castigliano type.

Let us assume, for example, that the second equation of (3.1) is satis-
fied. Thils means that the variational function wu(g) 1is glven, while the
function m(g) 1s expressed in terms of wu(g) . Let us integrate by parts
the first term under the integral sign in Expression (3.3). By taking into
conslderation the second equation of (3.1) we obtain

l.
N = 2& (/59
0
According to (2.8) the functlion #y(w) represents a nondimensional creep

pu) dt + mu’ | (3.4)
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potential, which represents the analog of an elastic potential in the cor~
responding problem of nonlinear elasticlty. The Iintegral of pudf glves
the wrrk of the external forces, hence, the functional ¥ 1is transformed
into a functional of Lagrange type. Taking into account (2,9) the varia-

tional equation will be the following:
!

25& (U — pu) dE = (m'du — mdu’)|} (3.5)
o
The right-hand side represents the work of the external forces, applied
to the edges of the shell. The function ¢ 1s determlned in terms of w ,
but as a consequence of (3.2) the quantity w 1is a function of

2 2.2 — .2 1 uo
u? + mPe® = u® 4 u".
Let us now assume, that the first equation of (3.1) is satisfled. Follow-
ing exactly the same method, we will transform the functional (3.3) to the

form

4
v 202

N :W’—‘J) dg + um’ |}
0

The expression under the integral sign

Pp— %:Tz S [S Godso— coeo] = —

€,0x

S 80d6,

€40y

will be the analog of the additional work for thw nonlinear elastic body.
Therefore, the functional ¥ 1s transformed to the Castiglilano functional

N = — 20 + um'],
The variatlonal equation with the consideration of (2.9) will be the fol-
1 : s
owing 200 = (udm’ — u’'dm),’ (3.6)

The argument of the function ¢ — 2v3/b wlll be now the expression

m? 4 My (m" + 2p)s
Exactly analogous results are also obtalned, in the case when the axial
force 1s different from zero, only 1n this case it 1s not possible to write
an explicit expression for the Lagrange functional in terms of u(§) and for
the Castigliano functional in terms of m(g) .

4, The application of the formulated varlational principle, which allows
the independent prescription of the approximate functions for wu(g) and for
m{g) , has some advantages. In any case, introducing two sought parameters,
we can expect a better accuracy, then by the use of the ordinary variational
principles, where in most cases only one parameter 1s introduced. Inciden-
tally, let us notlce that the condition &¥ = O which depends on the elec-
tion of the functions of comparison can mean as well a maximum as a minimum
of the functional ¥ .

As an 1llustration, let us consider the problem of an edge effect of an
infinitely long cylindrical shell, loaded with a uniformly distributed
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pressure. Let us conslder at first that the axial force 1s absent, the case
T # 0 1s consldered 1n exactly analogous way. We will take the power creep
law, place the orlgin of the coordinates at the edge of the shell and we
will solve the problem for two cases: (a) the edge is simply supported,
u{0) = m{(0) = 0, and (b) the edge is clamped, u{0) = u’{0}) =0 .

At a sufficlently large distance from the supported edge the shell is in
a membrane state, therefore, m(=) = 0, u(=) = u*, w(=) = w*, from the second
equation of (3.1) and the relation (3.2) it follows that
n-1
u* = pn, o* = prl = u* n
Let us introduce the functions y(g) and p{g) which satisfy the system
of linear equations
U' 420V =0, V' —2A(U —u*) =0 (4.1)
and the boundary conditions
U@ =0, V(0)=0 1n the case (a); U (0)=0, U’ ' (0)=0
in the case (b).

The solution of Equations (4.1) can be expressed in the following way:

1 n~1

U =u*Uq(ak), V =pu*" V, (ak) (ag A, Be=ur (%)’) (4.2)
The functlons U, and V, are determined by Expresslons
Uy@@)=1—e>cosz, Vyx)=e*sinz (case (a)) (4.3)

Up(xy=1—e=(cosz+sinz), V,(z)=e*(cosx—sinz) (case (b))

Let us look for the solution of the problem in consideration in the form
of 4 = U{at), m = V(al), where the parameters o and § are chosen
from the condition that the variation of the functional ¥ 1s zero, In

addition, let us assume that ne1

0 = 0*w, = u* " o, (4.4)

Introducing (4.2) and (4%.4) into the first equation of (3.1}, and deter=
mining in {3.2) the function v which corresponds to the power creep law,

we obtain an
0T = U2 + BV 0,2 (4.5)

For the calculation of the functional (3.3) let us express it in the form
(2.9) letting 7 = 0 and w'= y~ . For an infinlte reglon the integral
turns out to be divergent; to provide 1ts convergence we will add some con=-
stant terms under the integral expression. For the purpose of calculation,
it is cenvenlent to"choose x = g€ &as the variable of integration; now
the primes will indicate the differentiation with respect to the variable,
To within a constant multiplier we obtaln for the functicnal ¥ 64-6)

oc 0

1V=aBSUO’V°’da:+-i—&[”‘3'ji(U°2-—1.)-— 2 B2V02m0-—»2(U0—1)]ix

@ 7+ 1
0 ]
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It is evlident, that with the assumed election of the functions of compar=-
ison the condition (2.9) will be satisfiled in the case (a), as well as in
the case (b).

Let us write Expression (4.6) in the following way:
1
NZO‘BA‘FTB(B)

The stationary conditions will be

BA— B (@) =0, ad++I3 =0
From here 1t follows that
a B
wEB =0,  a—_ (4.7)

For n =1 we have B = 1 , hence we must expect, that for n > 1 we
wlll have g < 1 .

Let us now pass to the construction of the approximate solutions for the
boundary conditlons.

Case (a) . The quantity v, results to be considerably smaller,
than U7,, the quantity w, must be smaller than unity; g < 1 , therefore,
the first term will be the predominant one on the right-hand side of Equation

(4.5). Let us assume et

n
w,=U" (1 +p) (RG]
Substituting this expression into (4.5) and retaining only the first power
of p , we obtain

n—1 —
o=~ 2 g pr

With the same degree of accuracy we obtain

B@) =2, P,

Whereas 4 = —% . In the expression for p5(g) we have
S 1’_11_ 1 oc n-1
n n n
L=\t Ut g)dn L= (WUt
0 0
Now from (4.7) 1t follows that
2J 2J
2 — &1 2 4 (22
B =7 a 4 ( 3 ng) (4.8)
We give the values of B and o calculated for n = 1,...,6.
n 1 2 3 4 5 6
8= 1.000 0.840 0.728 0.643 0.598 0.540

1.000 0.860 0.763 0.718 0.678 0.646

For bigger values of n , the approximation, based on the assumptilon,
that the deflections and moments are the same, as for an elastlic shell, can
not be considered reliable. Besides, an exact formulation of the shell
problem, loaded wilth the pressure and supported at the edge, 1s contradictory
to a power creep law. Indeed, uw =0, m =0 for x = O, therefore, =0,

o

i
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and the solution of Equations (3.1) in the neighborhood of the origin of the
coordinates does not exlst.

The reason for this 1s easy to understand, if we observe, that for the
given boundary conditions the limiting state of an ldeally rigid-plastic
shell 1s impossible. The circumstance, that for a power creep law the dila-
gram ¢,¢, 1s tangent to the ¢, axls, creates here a similar situation.
The situation can be corrected, by midifying slightly the creep law in the
region of very small stresses. With the use of the variatlonal method this
difficulty does not arise,

Case (b). Now 4 =3 , the quantities [, and V, have the same
order in a certain region, and the simplifilcations, found out from the con-
sideration of a simply supported shell, do not take place here. Let us
express B{g) in the form

B ) =2/, — 1B,

Here
J,_:S{”L(%‘;f— )-—~UQ+1]d§, J2=SV02mod§
o 8

The integrals J, and J, are functions of 8 . The condition (4.7) leads
to the following relations:

Jo—pr 2y <0, a:_i(it.-ig) (4.9)

n -1 8 n+1

The calculations, done for n = 3 , have shown, that B8 =1 , for which
a = 0.716 ., The circumstance, that the magnitude of the moment at the
clamped edge for n = 3 1is equal to the magnitude of the moment for n =1,
hence, it 1s the same as for an elastlc shell, must not be surprising. In
the limiting state of an ideally plastic shell for P =1 the magnitude of
the moment at the clamped edge is equal to /3 = 0.866 , which differes by
a relatively small amount from unity.

The same problem was solved in the paper [4], with the help of the varia-
tional Lagrange equation., The deflection was given in the same form as here,
and the simplification consisted in that the rate of change of the curvature
was considered only a function of the moment, and the veloeclty of circular
deformation only a function of circumferential stress. For n = 3, the
value g = 0.659 was found. Of course, the dilstribution of the bending
moment turned out to be completel different. In the presence of an axilal
force, the computation is done by an analogous method.

For this purpose let us assume

-1 4
t=wveln | u=vxylU, m=fc "V, ot =c "a, (4.10)

Here U, 1s a functilon, which satisfles the boundary conditions fer the
deflection and which 1s unity at infinity, V, 1s a function which satlsfiles
tne boundary conditions for the moment and which vanishes at infinity. We
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can choose these functions in the same way as in the absence of the axial
force. Then they will depend on the argument «f , the quantity ¢ , which
determines the rate of damping of the edge effect, 1s one of the sought vari~
ational parameters, and the second of these parameters 1s g .

Let us require, that wci(w) = 1 , then from (2.6) it follows that

{ = Yz + 2
Equation (2.4) for g = = gives
— CI/'n ....y__: .
P (7 + Vs) (4.11)
The quaritity r 1s glven, consequently, all the parameters introduced
are now known. 1.?, ‘ 4 A
e T = s P2 - P AT
et P ‘\?—-—Q, ’}’-—-«a (1‘ V:?T) (QM[’I-{—(T“V%:} )(4.12)
Equation (2.4) takes the form
an
(0o = 12U 2 + BV + v)? (01)? (4.13)

The quantities a and g are found by the previous method from the con=-
itions {4.7), in which

a=rfoen B = (el ) 2]
0 4]
- “,:"_%:‘f [(BVo 4 V)2 0ot + (BVy — V)2 0y~ — 2v2] — 2y2 (U, — 1)} dr (4.14)

The computation 1s reduced to the calculation of 5{g) for some values of
g , after that, we find by interpolation the value, for which the first of
the conditions (4.8) is satisfied. Let us observe, that |gj<y for n>1.
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